Sains Malaysiana 54(3)(2025): 913-926
http://doi.org/10.17576/jsm-2025-5403-22
Forecasting
Life Expectancy using Latent and Observable Factors: Effects of Urbanization on
Mortality Modelling
(Ramalan Jangka Hayat menggunakan Faktor Terpendam dan Boleh Diperhatikan: Kesan Urbanisasi terhadap Pemodelan Kematian)
NORKHAIRUNNISA REDZWAN1,2 & ROZITA RAMLI1,*
1Department
of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2School of
Mathematical Sciences, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
Received:
21 May 2024/Accepted: 10 December 2024
Abstract
Sustainable development of the future is influenced by
population growth, population ageing, migration, and urbanization. However,
urbanization have adverse effects on environmental, social behaviour and health
aspects, such as mortality risks due to climate change and infectious diseases.
As the urban population is growing rapidly, there is a need to accurately
forecasts these risks in anticipation of future ageing population, by
developing a model to estimate and forecast mortality. Many existing
extrapolative mortality models are described by latent factors, and it is
difficult to understand the underlying dynamics of these factors. Therefore, a
comprehensive analysis on the relationship between mortality index and
urbanization growth were conducted. This study also aims to propose a new model
that incorporates urbanization as an observable factor in modelling and
forecasting mortality, by extending the Lee-Carter model. Result indicates that there is a possible
long-run relationship between mortality and growth of urban population for all
countries in the study. The proposed model provides better in-sample fitting
for all countries. This study also predicts the life expectancy at birth based
on the proposed model and life expectancy is forecast to reach age 85 for
selected countries. Results also show that Malaysian adults ages between 20 and 40 years old are
more likely to be affected by an increase in urbanization growth. Urbanization
and mortality are key factors in planning for sustainable development of the
future. Therefore, it is important to develop a mortality forecasting model
that can account for the uncertainty surrounding urbanization.
Keywords:
Forecasts; Lee-Carter; life expectancy; mortality; urbanization
Abstrak
Pembangunan mampan masa depan dipengaruhi oleh pertumbuhan penduduk, penuaan penduduk, penghijrahan dan urbanisasi. Walau bagaimanapun, urbanisasi mempunyai kesan buruk terhadap aspek alam sekitar, tingkah laku sosial dan kesihatan, seperti risiko kematian akibat perubahan iklim dan penyakit berjangkit. Oleh kerana penduduk bandar berkembang pesat, terdapat keperluan untuk meramalkan risiko ini dengan tepat dalam jangkaan penduduk menua masa depan, dengan membangunkan model untuk menganggar dan meramal kematian. Banyak model kematian ekstrapolatif sedia ada digambarkan oleh faktor pendam, yang sukar untuk difahami.
Oleh itu, analisis komprehensif mengenai hubungan antara indeks kematian dan pertumbuhan urbanisasi dijalankan. Kajian ini juga bertujuan untuk mencadangkan model baharu yang menggabungkan urbanisasi sebagai faktor boleh cerap dengan faktor pendam dalam pemodelan dan ramalan kematian, sebagai model lanjutan Lee-Carter. Keputusan menunjukkan bahawa terdapat hubungan jangka panjang antara kematian dan pertumbuhan penduduk bandar untuk semua negara dalam kajian ini.
Model yang dicadangkan memberi penyuaian sampel yang lebih baik untuk semua negara. Kajian ini turut meramalkan jangka hayat ketika lahir berdasarkan model cadangan dan jangka hayat dijangka mencapai umur 85 tahun bagi negara-negara terpilih. Keputusan kajian juga menunjukkan bahawaorang dewasa Malaysia yang berumur antara 20 dan 40 tahun lebih cenderung terjejas oleh peningkatan pertumbuhan urbanisasi. Urbanisasi dan kematian adalah faktor utama dalam merancang pembangunan mampan masa depan. Oleh itu, adalah penting untuk membangunkan model ramalan kematian yang boleh mengambil kira ketidakpastian dalam urbanisasi.
Kata kunci: Jangka hayat; kematian; Lee-Carter; ramalan; urbanisasi
REFERENCES
Ahmed, Z., Zafar, M.W. & Ali, S. 2020. Linking
urbanization, human capital, and the ecological footprint in G7 countries: An
empirical analysis. Sustainable Cities and Society 55: 102064.
Antai, D. & Moradi, T. 2010. Urban area disadvantage and
under-5 mortality in Nigeria: The effect of rapid urbanization. Environmental
Health Perspectives 118(6): 877-883.
Bai, J. & Ng, S. 2006. Evaluating latent and
observed factors in macroeconomics and finance. Journal of Econometrics 131:
507-537.
Bijari, N.B., Mahdinia, M.H. &
Mansouri Daneshvar, M.R. 2021. Investigation of the urbanization contribution
to the COVID-19 outbreak in Iran and the MECA countries. Environment,
Development and Sustainability 23: 17964-17985.
Boonen, T.J. & Li, H. 2017. Modeling and forecasting mortality with economic growth: A multipopulation approach. Demography 54(5): 1921-1946.
Booth, H. & Tickle, L. 2008. Mortality modelling
and forecasting: A review of methods. Annals of Actuarial Science 3(1-2):
3-43.
Burroughs Pena, M.S., Bernabé-Ortiz, A., Carrillo-Larco,
R.M., Sánchez, J.F., Quispe, R., Pillay, T.D., Málaga, G., Gilman, R.H.,
Smeeth, L. & Miranda, J.J. 2015. Migration, urbanization and mortality:
5-year longitudinal analysis of the PERU MIGRANT study. Journal of Epidemiology
and Community Health 69(7): 715-718.
Cairns, A.J., Blake, D. & Dowd, K.
2008. Modelling and management of mortality risk: A review. Scandinavian
Actuarial Journal 2008(2-3): 79-113.
Chen, K., Zhou, L., Chen, X., Ma, Z., Liu, Y., Huang,
L., Bi, J. & Kinney, P.L. 2016. Urbanization level and vulnerability to
heat-related mortality in Jiangsu Province, China. Environmental Health
Perspectives 124(12): 1863-1869.
Cutler, D., Deaton, A. & Lleras-Muney, A. 2006. The
determinants of mortality. Journal of Economic Perspectives 20(3): 97-120.
Demirel, D.F. & Basak, M. 2017. Human mortality modeling with a fuzzy approach based on singular value
decomposition technique. In Computational Intelligence: International Joint
Conference, IJCCI 2015 Lisbon, Portugal, November 12-14, 2015, Revised
Selected Papers 2017. Springer International Publishing. pp. 197-215.
Djeundje, V.B., Haberman, S., Bajekal,
M. & Lu, J. 2022. The slowdown in mortality improvement rates 2011-2017: A multi-country
analysis. European Actuarial Journal 12(2): 839-878.
Dutton, L., Pantelous, A.A.
& Seklecka, M. 2020. The impact of economic
growth in mortality modelling for selected OECD countries. Journal of
Forecasting 39(3): 533-550.
Fazle Rabbi, A.M. & Khan, H.T. 2022. Stochastic
mortality forecasts for Bangladesh. PLoS ONE 17(11): e0276966.
Fonseca, L.M., Domingues, J.P. & Dima, A.M. 2020.
Mapping the sustainable development goals relationships. Sustainability 12(8):
3359.
Fung, M.C., Peters, G.W. & Shevchenko, P.V. 2019.
Cohort effects in mortality modelling: A Bayesian state-space approach. Annals
of Actuarial Science 13(1): 109-144.
Fung, M.C., Peters, G.W. & Shevchenko, P.V. 2017. A
unified approach to mortality modelling using state-space framework: Characterisation,
identification, estimation and forecasting. Annals of Actuarial Science 11(2): 343-389.
Garba, T.E., Richard, R.L., Thani, N.E.A., Majid, M.A.A.,
Lawal, M. & Yelwa, N.A. 2021. Geological effects on water quality: A review
of issues and challenges in Malaysia. Sains Malaysiana 50(7): 1857-1870.
Gokmenoglu, K., Azin, V. & Taspinar, N. 2015. The
relationship between industrial production, GDP, inflation and oil price: the
case of Turkey. Procedia Economics and Finance 25: 497-503.
Gujarati, D.N. & Porter, D.C. 2009. Basic
Econometrics. 5th ed. New York: Prentice Hall.
Human Mortality Database. 2023. Max Planck Institute
for Demographic Research (Germany), University of California, Berkeley (USA),
and French Institute for Demographic Studies (France). www.mortality.org
(Accessed on 15th September 2023).
Islam, M.S., Tareque, M.I.,
Mondal, M.N., Fazle Rabbi, A.M., Khan, H.T. & Begum, S. 2017. Urban-rural
differences in disability-free life expectancy in Bangladesh using the 2010
HIES data. PLoS ONE 12(7): e0179987.
Jaber, J.J., Yaacob, N.A. & Alwadi,
S. 2023. Hybrid Lee-Carter model with adaptive network of fuzzy inference
system and wavelet functions. Sains Malaysiana 52(3): 1011-1021.
Johansen, S. 1988. Statistical analysis of
cointegration vectors. Journal of Economic Dynamics and Control 12(2-3):
231-254.
Lee, R.D. & Carter, L.R. 1992. Modeling and forecasting US mortality. Journal of the American Statistical
Association 87(419): 659-671.
Ling, O., Leh, H., Musthafa, S.N.A.M.
& Rasam, A.R.A. 2014. Urban environmental health:
Respiratory infection and urban factors in urban growth corridor of Petaling Jaya, Shah Alam and
Klang, Malaysia. Sains Malaysiana 43(9): 1405-1414.
Li, N. & Lee, R. 2005. Coherent mortality forecasts
for a group of populations: An extension of the Lee-Carter method. Demography 42: 575-594.
Liu, X., Xu, Y., Engel, B.A., Sun, S., Zhao, X., Wu, P.
& Wang, Y. 2021. The impact of urbanization and aging on food security in
developing countries: The view from Northwest China. Journal of Cleaner
Production 292: 126067.
Ma, Q. & Boonen, T.J. 2023. Longevity risk modeling with the Consumer Price Index. North American
Actuarial Journal 28(3): 593-610.
Masseran, N., Farouk, S.N.A., Nur-Firyal, R. & Mansor, M.M.
2024. Latent hidden factor model for Malaysian consumer price index. Sains Malaysiana 53(4): 969-982.
Niu, G. & Melenberg, B.
2014. Trends in mortality decrease and economic growth. Demography 51(5): 1755-1773.
Oleson, K.W., Monaghan, A., Wilhelmi, O., Barlage, M.,
Brunsell, N., Feddema, M., Hu, L. & Steinhoff, D.F. 2013. Interactions
between urbanization, heat stress, and climate change. Climatic Change 129: 525-541.
Phillips, P.C. & Perron, P. 1988. Testing for a
unit root in time series regression. Biometrika 75(2): 335-346.
Plat, R. 2009. On stochastic mortality modeling. Insurance: Mathematics and Economics 45(3): 393-404.
Sajid, M.R., Muhammad, N., Zakaria, R. & Bukhari,
S.A. 2020. Modifiable risk factors and overall cardiovascular mortality:
Moderation of urbanization. Journal of Public Health Research 9(1893): 410-416.
Seklecka, M., Pantelous, A.A.
& O'Hare, C. 2017. Mortality effects of temperature changes in the United
Kingdom. Journal of Forecasting 36(7): 824-841.
Shang, H.L. 2012. Point and interval forecasts of
age-specific life expectancies: A model averaging approach. Demographic
Research 27: 593-644.
United Nations, Department of Economic and Social
Affairs, Population Division. 2019a. World Population Ageing 2019. New
York: United Nations.
United Nations, Department of Economic and Social
Affairs, Population Division. 2019b. World Urbanization Prospects 2018:
Highlights. New York: United Nations.
Verbeke, J. & Cools, R. 1995. The
Newton‐Raphson method. International Journal of Mathematical Education
in Science and Technology 26(2): 177-193.
Walter, B.S. & DeWitte, S.N. 2017. Urban and rural
mortality and survival in Medieval England. Annals of Human Biology 44(4): 338-348.
Wicke, F.S., Ernst, M., Otten, D., Werner, A., Dreier,
M., Brähler, E., Tibubos,
A.N., Reiner, I., Michal, M., Wiltink, J., Münzel, T., Lackner, K.J., Pfeiffer, N., König, J., Wild,
P.S. & Beutel, M.E. 2022. The association of depression and all-cause
mortality: Explanatory factors and the influence of gender. Journal of
Affective Disorders 303: 315-322.
World Bank. 2023. Urban population (% of total
population). (n.d.). https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
(Accessed on 19th September 2023).
*Corresponding author; email: itaramli@ukm.edu.my
|